Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

نویسندگان

  • Jian Wu
  • Yingke Xu
  • Zhouyan Feng
  • Xiaoxiang Zheng
چکیده

Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs) and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards fully automated identification of vesicle-membrane fusion events in TIRF microscopy

Total Internal Reflection Fluorescence Microscopy (TIRFM) is imposing itself as the tool of choice for studying biological activity in close proximity to the plasma membrane. For example, the exquisite selectivity of TIRFM allows monitoring the diffusion of GFP-phogrin vesicles and their recruitment to the plasma membrane in pancreatic β-cells. We present a novel computer vision system for auto...

متن کامل

GLUT4 ready to go

GLUT4 ready to go esicles containing the glucose transporter GLUT4 travel rapidly on a microtubule network that lies just under the plasma membrane in resting cells, according to results from Lizunov et al. (page 481). The vesicles occasionally touch the plasma membrane and, when stimulated by insulin, quickly fuse with it. GLUT4 is sequestered in vesicles in resting cells. Insulin exposure ind...

متن کامل

Sites of Glucose Transporter-4 Vesicle Fusion with the Plasma Membrane Correlate Spatially with Microtubules

In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GL...

متن کامل

Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles

GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associ...

متن کامل

Rab10 delivers GLUT4 storage vesicles to the plasma membrane

The glucose transporter, GLUT4, redistributes to the plasma membrane (PM) upon insulin stimulation, but also recycles through endosomal compartments. Different Rab proteins control these transport itineraries of GLUT4. However, the specific roles played by different Rab proteins in GLUT4 trafficking has been difficult to assess, primarily due to the complexity of endomembrane organization and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015